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Abstract

In this study the performance and emissions characteristics of a heavy-duty, direct injection, Compression
ignition (CI) engine which is specialized in agriculture, have been investigated experimentally. For this
aim, the influence of injection timing, load, engine speed on power, brake specific fuel consumption
(BSFC), peak pressure (PP), nitrogen oxides (NOx), carbon dioxide (CO2), Carbon monoxide (CO),
hydrocarbon (HC) and Soot emissions has been considered. The tests were performed at various injection
timings, loads and speeds. It is used artificial neural network (ANN) for predicting and modeling the engine
performance and emission. Multi-objective optimization with respect to engine emissions level and engine
power was used in order to deter mine the optimum load, speed and injection timing. For this goal, a fast
and elitist non-dominated sorting genetic algorithm II (NSGA II) was applied to obtain maximum engine
power with minimum total exhaust emissions as a two objective functions.

Keywords: Diesel engine, Artificial Neural Network, Multi-objective optimization.

1. INTRODUCTION

Diesel engines are more powerful and consume
less fuel per power output than that of gasoline
engines, which is desirable for trucks and off-road
engineering applications. Also, today’s diesel engines
are designed to pass a set of strict emissions
certification limits. Therefore, being aware of the
engine’s performance and exhaust emissions for
possible conditions are very vital. One of the engine’s
parameter that is highly effective on engine
performance and emissions is injection timing.

Several researchers have also reported the
effectiveness of injection timing on the performance
and exhaust emissions of diesel engines [1-4]. Payri et
al. examined a study on the start of injection timing in
a diesel engine. They stated that retarded fuel
injection yields very low levels in smoke opacity and
NOx emissions, but it causes to higher CO and HC
emissions and BSFC [1]. Aktas and Sekman
investigated the effects of fuel injection advance on
the performance and exhaust emissions of a diesel
engine fueled with biodiesel [2]. The experiments
were performed under three different injection timing
at full load. They found when injection timing was

increased, the engine torque increased and BSFC
decreased. Also, it was determined that CO and HC
emissions decreased, while NOx emissions increased.
Sayin et al. studied the effects of injection pressure
and timing on the performance and emission
characteristics of a DI diesel engine using methanol
(5%, 10% and 15%) blended-diesel fuel were
investigated [3, 4]. The tests were conducted on three
different injection pressures and timings at a constant
engine load and speed. The results indicated that
BSFC, BSEC and NOx emissions increased as BTE,
smoke, CO and HC decreased with increasing amount
of methanol in the fuel mixture.

Artificial neural networks (ANNSs) are used to
solve a wide variety of problems in science and
engineering. The predictive ability of an ANN results
from the training on experimental data and then
validation by independent data. An ANN has the
ability to re-learn to improve its performance if new
available data. A well trained ANN can be used as a
predictive model for a specific application, which is a
data-processing system inspired by biological neural
system. ANN modeling is very useful and efficient
because the experimental investigations on
performance and emissions are complex, time
consuming and costly. Numerous studies have been
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undertaken to predict the performance and exhaust
emission characteristics of internal combustion
engines by using ANNSs [5-8]. For example, Parlak et
al. used ANNSs for the modeling of a diesel engine to
predict specific fuel consumption and exhaust
temperature [5]. Ghobadian et al. modeled a diesel
engine using waste cooking biodiesel fuel by ANN.
They used engine speed, percentage of bio-fuel blend
as the input variables and torque, BSFC, HC and CO
as the outputs [6]. Necla Kara Togun et al. predicted
torque and specific fuel consumption of a gasoline
engine by using ANN [7]. They developed ANN to
predict torque and BSFC of a gasoline engine in terms
of spark advance, throttle position and engine speed.
Shivakumar et al. have used ANN to prediction of
performance and emission characteristics of a CI
engine using WCO. ANN modeling was used to
predict BTE, BSEC, Texh, NOx, HC and Smoke [8].

Profits can be made out of the ANN outputs. For
example, they can be used for optimization and
sensitivity analysis. In optimization several objectives
can be optimized simultaneously as it is called multi-
objective optimization problems (MOPs). These
objectives often conflict with each other so that
improving one of them will worsen another.
Therefore, there is no single optimal solution with
respect to all the objective functions. Instead, there is
a set of optimal solutions, known as Pareto optimal
solutions or Pareto front [9, 10].

A comprehensive explanation of the evolutionary
algorithm methods has been presented in Coello [11].
A sharing operation is performed in NSGA to
maintain the population diversity that, however,
attracted criticisms for being too sensitive to the
selection of sharing parameters. Besides, the lack of
elitism was also a motivation for the modification of
that algorithm to NSGA-II [12], in which a direct
elitist mechanism, instead of sharing mechanism, has
been introduced to enhance the population diversity.
The Pareto based approach of NSGA-II has been used
recently in a wide area of engineering.

In this study, an ANN was developed to predict
exhaust emissions and engine performance of a diesel
engine. Injection timing, engine speed and engine
load were used as the input variables and brake
power, torque, BSFC, Peak Pressure and exhaust
emissions (CO, CO2, NOx, HC, Smoke) as the
network outputs. Then multi-objective optimization
applied to minimize overall emissions level and
maximize power simultaneously.

2. Experiment and procedure

2.1. Engine Specification

In this study, the experiments were performed on
an agricultural engine (MT4.244) produced by
Motorsazan. Details of the engine’s specifications are
given in Table 1.

Table 1 Test engine Specifications

Name MT4.244

Bore x Stroke 100 mm x 127 mm

Number of Cylinders 4

Volume Capacity 3.99 Liter

Cycle 4 stroke

Aspiration Wastegated Turbocharger

Combustion System Fast ram direct injection

Compression Ration 17.25:1

Fuel Pump Bosch Rotary with Boost
control

Governing Mechanical

Cooling Water, Belt Driven water pump

Weight 265 Kg

Length x Width x Height | 678.7mm x 655mm x 748.5mm

2.2. Experimental set up

The study was carried out in the laboratory on an
advanced fully computerized experimental engine test
cell comprising of an eddy current dynamometer, in-
cylinder pressure transducer, exhaust gas analyzer and
soot meter. The schematic diagram of the
experimental setup is shown in Fig. 1.

2.3 Experimentation and uncertainty error

In order to evaluate the performance and
emissions, the experiments were conducted at four
various injection timing [8°,4°,2° CA BTDC and 1°
CA ATDC(-8,-4,-2 and +1 degrees]. The experiments
were carried out at 1400 rpm (maximum torque
speed), 1700 rpm and 2000 rpm (maximum power
speed) and at four various loads (25%, 50%, 75% and
100%). The atmospheric pressure, charge pressure
and ambient humidity were recorded regularly during
the tests. The engine was warmed up for about 30
min. The experimental data required for the
evaluation of the performance parameters and
emissions were recorded after the engine was reached
steady-state operation, which realized easily by
observing a constant cooling water temperature. The
variation in the power, BSFC, in-cylinder peak
pressure and exhaust emissions of CO,, CO, HC, NO,
and Smoke were determined for each mentioned
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operating conditions. It should be noted that all the
tests were repeated three times.

The complete

experimental data and uncertainties of the engine

performance and emissions are shown in Table 2

In-Cylinder
; Pressure
Diesel Tank
Air Dat
Exhaust Flow-meter A aia
Gases cquisition
Analyzer Fuel
Flow-meter
Smoke _J
Meter
]
Diesel S Eddy Current
Engine S Dynamometer E
<
w
— -

Figl.Schematic diagram of experimental setup

Table 2 Experimental results and uncertainties of the engine performance and emissions

Parameter tirIrI:ijr;g ESI;geien; El?fige Power | HC | CO | CO, | NO, | Smoke BSFC Pr::lljre

Dimension sec rpm % Hp ppm | ppm | % | ppm | mg/m® | g/kW.h Bar

UE“rcr‘i)rr”(“,;:‘)y 286 | 0.18 1 0.03 |331]016| 0.1 | 0.16 | 0.14 0.04 0.012
1 -8 2000 100% | 69.11 15 | 302 | 11.5 | 1565 | 63.44 222 140.88
2 -8 2000 75% 51.83 17 | 250 | 9.2 | 1102 | 33.67 | 228.629 101.02
3 -8 2000 50% 34.55 12 | 220 | 6.8 | 591 17.78 | 241.5267 | 86.90
4 -8 2000 25% 17.27 7 150 | 3.2 | 131 9.6 606.35 68.67
5 -8 1700 100% | 59.28 17 | 621 | 109 | 1577 | 98.63 233.56 134.32
6 -8 1700 75% | 44.46 | 18 | 512 | 8.8 | 1293 | 38.12 241.21 100.12
7 -8 1700 50% 2964 | 13 | 446 | 6.6 | 775 18.17 249.23 83.45
8 -8 1700 25% 14.82 8 333 3 236 | 12.12 533.91 63.87
9 -8 1400 100% | 49.11 | 22 | 878 | 104 | 1598 | 309.6 245.73 130.41
10 -8 1400 75% 36.83 19 | 780 | 8.3 | 1466 | 43.65 248.13 98.75
11 -8 1400 50% 24.55 15 | 650 | 6.5 | 862 | 19.04 269.45 79.86
12 -8 1400 25% 12.27 10 | 460 | 2.8 | 411 14.68 657.26 58.43
13 -4 2000 100% | 57.80 | 33 | 611 | 11.9 | 914 76.4 263.81 115.09
14 -4 2000 75% | 4335 | 21 | 555 | 9.68 | 638 | 44.82 271.53 96.16
15 -4 2000 50% 2890 | 15 | 401 | 7.45 | 349 | 18.16 303.14 82.12
16 -4 2000 25% 5.78 10 | 333 | 3.6 | 113 14.3 761.31 67.93
17 -4 1700 100% | 52.87 | 45 | 777 | 11.4 | 1085 | 143.15 | 246.89 109.09
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18 -4 | 1700 | 75% | 39.34 | 30 | 643 | 933 | 823 | 46.12 | 259.63 | 89.81
19 -4 |1 1700 | 50% | 26.16 | 19 | 518 7.1 428 | 19.03 | 271.12 | 79.43
20 -4 |1 1700 | 25% | 8.01 10 | 411 35 188 | 14.88 | 790.54 | 62.12
21 -4 | 1400 | 100% | 46.32 | 57 | 933 11.1 | 1135 | 225.8 | 254.34 | 104.07
22 -4 | 1400 | 75% | 34.74 | 37 | 823 9 957 | 49.74 | 297.21 | 81.08
23 -4 | 1400 | 50% | 23.16 | 22 | 708 6.8 608 | 1935 | 32390 | 67.23
24 -4 | 1400 | 25% | 11.58 | 11 | 483 33 361 15.2 820.43 | 55.56
25 -2 12000 | 100% | 5529 | 39 | 799 | 1235 | 691 108.2 | 261.12 | 101.09
26 -2 12000 | 75% | 4146 | 25 | 601 | 10.18 | 508 | 46.58 | 271.65 | 92.87
27 -2 12000 | 50% | 27.64 | 19 | 483 | 7.77 | 258 | 19.96 | 315.11 | 78.52
28 -2 12000 | 25% | 5.52 | 11 | 397 | 4.02 97 1497 | 853.81 | 65.93
29 -2 | 1700 | 100% | 49.49 | 68 | 871 12.1 | 739 | 198.32 | 267.43 | 98.40
30 -2 | 1700 | 75% | 37.02 | 37 | 699 | 9.81 | 608 | 49.33 | 27821 | 81.28
31 -2 | 1700 | 50% | 25.63 | 25 | 566 | 7.48 | 304 | 21.22 | 323.09 | 73.52
32 -2 | 1700 | 25% | 480 | 12 | 454 | 3.85 | 146 | 1543 | 87832 | 60.49
33 -2 | 1400 | 100% | 43.98 | 95 | 978 119 | 858 295 296.59 | 94.92
34 -2 | 1400 | 75% | 32.98 | 54 | 888 9.5 681 | 54.75 | 33939 | 74.38
35 -2 | 1400 | 50% | 2199 | 31 | 762 7.1 437 | 23.02 | 369.98 | 66.09
36 -2 | 1400 | 25% | 10.99 | 13 | 498 3.7 308 | 1598 | 907.59 | 50.02
37 1 2000 | 100% | 51.73 | 51 | 841 | 13.42 | 500 | 152.7 | 290.53 | 90.29
38 1 2000 | 75% | 38.79 | 32 | 691 | 10.66 | 373 | 61.95 | 296.97 | 87.08
39 1 2000 | 50% | 2586 | 26 | 588 | 8.17 | 242 | 2231 | 33448 | 74.27
40 1 2000 | 25% | 5.17 | 12 | 444 4.4 75 1549 | 978.31 | 61.85
41 1 1700 | 100% | 47.35 | 86 | 921 13.1 | 541 | 237.43 | 302.45 | 88.54
42 1 1700 | 75% | 35.07 | 45 | 765 | 104 | 444 | 7881 | 313.32 | 78.63
43 1 1700 | 50% | 2332 | 35 | 642 | 7.93 | 269 | 2552 | 346.15 | 67.34
44 1 1700 | 25% | 448 | 14 | 488 4.1 111 1592 | 992.63 | 55.12
45 1 1400 | 100% | 4192 | 114 | 1009 | 12.34 | 639 | 391.45 | 32995 | 85.78
46 1 1400 | 75% | 3144 | 64 | 909 | 9.85 | 531 | 91.88 | 371.82 | 73.23
47 1 1400 | 50% | 2096 | 45 | 818 7.3 379 | 27.04 | 404.03 | 64.65
48 1 1400 | 25% | 10.48 | 15 | 513 39 255 16.33 | 1020.43 | 48.19

3. Artificial Neural Network (ANN)
3.1. Neural Network Design
ANN is an approach inspired by brain structure

and tries to simulate the brain processing capabilities.
Haykin defines a neural network as a massively

Parallel distributed processor [13]. It has an
inherent tendency for storing experimental knowledge
and making it available for use. It resembles the
human brain in two respects: the knowledge is
acquired by the network through a learning process,
and inter-neuron connection strengths known as
synaptic weights are used to store the knowledge.
Neural network operates like a ‘‘black box” model,
and does not require detailed information about the
system. Instead, it learns the relationship between the
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Peak pressure

Fig2.The architecture of proposed ANN model for the engine.

Input parameters and the controlled and
uncontrolled variables by studying previously
recorded data, in a similar way that a non-linear
regression might be performed. Another advantage of
using ANN is their ability to handle large and
complex systems with many interrelated parameters.
They simply ignore excess input data that are of
minimal significance and concentrate instead on the
more important inputs [14].

The learning-algorithm  was used  back
propagation (BP), one of the most popular learning-
algorithms [15, 16]. Success in the algorithms
depends on the user dependent parameters learning
rate and momentum constant. Faster algorithms such
as conjugate gradient, quasi-Newton, and Levenberg—
Marquardt (LM) use standard numerical optimization
techniques. These algorithms eliminate some of the
disadvantages mentioned above. In this case model
was trained with ‘‘Levenberg—Marquardt
optimization” learning algorithm. The Levenberg—
Marquardt algorithm is based on approaching second-
order training speeds without having the computation
of Hessian matrix [16].

MATLAB 7.0 was applied in all the stages of
developed model including training and testing of the
network. In this study ANN having an input layer
with three neurons for each input factor (Injection
timing, Engine loads and Engine speeds) and an
output layer with eight neurons (NOx, Soot, HC,
CO2, CO, Peak Pressure, Power and BSFC). One of
the most important tasks in ANN studies is to choose
the optimal network architecture which is related to
the activation function and the number of neurons in
hidden layer. Generally, the trial-and-error approach
is used. In this study, the optimal architecture of the
network was obtained by trying different activation
function and number of neurons. The performance of

each network was checked by correlation coefficient
(R) and is defined as follows:
2
R2=1-— M (D
2 (o)

The goal is to maximize correlation coefficient to
obtain a network with the best generalization. R
values were calculated for many different network
models. Based on this analysis, the optimal
architecture of the ANN was constructed as 3—15-8
NN and activation function in hidden layer and output
layer both were ‘logsig’. The architecture of proposed
ANN model is shown in Fig. 2

In the present work, 48 patterns were obtained
from the experiments by changing the process
parameters. Inputs and outputs have been normalized
in the range of 0-1. Inputs for the ANN (process
parameters) were the injection timing, engine loads
and engine speeds and the outputs were shown in the
Fig. 2

3.2 Evaluation of Results and Discussion

An ANN was developed based on this
experimental work to predict the missed data and
avoid spending excessive time running experimental
tests. The results showed that the training algorithm
of Back Propagation was sufficient for predicting
brake power, volumetric efficiency, peak pressure,
specific fuel consumption and exhaust gas
components for different engine load, speed and
injection timing. For this purpose 40 patterns of the
experimental results were used for training the ANN
model and 8 patterns were not applied to the model
and were used for testing.
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The Comparisons of the ANN-predicted results
and experimental (actual) results are indicated in Figs.
3 and 4. As mentioned before the criterion R was
selected to evaluate the networks to find the best
activation function and number of neuron. Linear
regression analyses were carried out to investigate the
network response in more detail. Correlation
coefficients of 0.9902, 0.993, 0.998, 0.9916, 0.9923,
0.9951, 0.9921 and 0.9908 were obtained for the HC,
CO2, CO, NOx, smoke, power, BSFC, peak pressure
at the training stage. It is clear that the correlation
coefficients for all output are close to unity indicating
the good accuracy of the developed model. Thus, this
ANN model can be used to predict emission and
performance parameter for diesel engine with
adequate accuracy.

3.3. Formulation
Hidden and output layers with ‘log-sigmoid’

transfer function were used to predict output. The log-
sigmoid transfer function was:

Where x is the weighted sum of the input. To
determine the emission parameters, bsfc, power and
peak pressure. Equations 3 to 10 in Table 3 were
derived from ANN. By using these equations
similarly, performance and exhaust emissions of the
diesel engine will be calculated.

Where f; (i =1, 2, 3... 15) can be calculated using:

__ 1 (11)
" 14exp Ui
Where v, to U,, calculate as follows:

Ui =Cii XTI+ Cyy XN+ Cq; XL+ Cy; (12)

Where, the constants (Cji) are given in Table 4.
For LM algorithm with 14 neurons and I, L and N are
injection timing, speed and load, respectively. It
should be noticed that in Equations 3-10, When using
the equations in Table 4, I, N and L values are
normalized by dividing them by 10, 2100 and 75
respectively. For outputs HC, CO, CO, NOx, Smoke,
BSFC and PP values need to be multiplied by 120,
1100, 15, 1600, 400, 1050 and 150, respectively.
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Fig3.Comparisons of the ANN-predicted results and experimental (actual) results for Power, BSFC and Peak Pressure at test stage
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Table 3 Derived equations from ANN

Power = 1 3
1+ ©—(0.51%f1+1.01+f,=1.10+f34+0.95+f4+ 0.17+f5+0.43+f5 +0.51+f7+0.99+fg+0.98+fg—1.92+f1 g—0.18+f11 +1.85+f1 2 +0.42+f13+0.12+f14—1.66+f15~2.46)
Bsfc = ! @
(1+ @~ (=3.41+f;-0.10+f,+0.30%f3—2.22+f, +1.58+f5 +1.32+f¢ +0.78+f7+0.47xfg+ 0.43+fg+1.16+f; 0+0.34+f11-0.60+f15+1.09+F1 3 +0.15+F1 4 + —2.34+f1 5 — 1.24)
PP = ! ®)
1+ @—(0.06%f;+0.22+f,—0.82+f3+0.19+f4—0.58+f5—0.62+f¢+0.2 1 +0.46xfg + 2.19+fg—2.10%f1g—0.17+f1 1 +1.87+f1 +0.42xf;3—0.084xf1 4 —0.90%f;5+0.56)
HC = ! (6)
1+ ©—(=0.085+f1—0.22+f,—2.64+f3+ 0.97+f4+ 0.96+f5+0.92+fg+ 0.03+f7—0.62+f5—1.77+fg+1.20+f10+2.18+f11 + 0.73+f;,—0.75+f13+0.30+f14—0.41+f15—-1.74)
o= ! ()
1+ @—(=0.12+f1+0.16+f,—1.70+f3+0.52+f4 +0.54+f5+0.77+f5 —0.83+f;—0.33+fg —0.081+fo+1.04+f10+1.35+f11 +0.50+f1+0.10+f;3+0.100+f;4,—0.06+f;5~0.736)
C02 = ! ®)
1+ @—(=0.402+f; +0.34+f,~1.93xf3+ 1.11+f, + 0.12+f5+0.33+f5+0.13+f; +0.35+fg+0.55+fg —0.86+f10+0.12xf;1+0.96f1 5+ 0.41+f13-0.38+f1 4 +2.41+f15-0.20)
NOx = 1 ©)
1+ @—(=0.47+f;+1.27+f,4+0.07+f3+0.58+f4 + 1.20+f5+0.95+f6+0.69+f7+1.18+fg+5.55+fg—2.23+f1—0.13+f11 +2.90+f1, +1.2761+f13+0.48+f14+1.98+f;5-2.46)
Smoke = ! (10)
1+ ©—(=0.50%f1+0.05+f,—3.63+f3+0.14+f, +2.83+f5+2.26+f5—2.08+f7+0.96+fg+ 0.86+fg —1.57+f10+2.94+f11 + 2.93+f1,—1.32+f1 3 +4.44+f14+0.34+f; 5 —3.66)
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4. Multi-objective optimization

Multi-objective optimization, which is also called
multi criteria optimization, has been defined as finding
a vector of decision variables satisfying constraints to
give acceptable values to all objective functions. In
general, it can be mathematically defined as Find the

vector X*= [x] , X5 , ..., X | to optimize:

Fay = [1(0), f2(20), ., fi (O, (13)
Subject to m inequality constraints,

gix) <0 i=1tom (14)
and p equality constraints:

hi(x) =0 j=1top (15)

where X* € R" is the vector of decision or design
variables and F(x) € R¥ is the vector of objective
functions, which must each be either minimized or
maximized [17].

A variety of approaches can be used to solve this
problem. One popular approach is to combine those
objectives into a single composite objective so that
traditional mathematical programming methods can
be applied. To this end, some sort of value or utility
function needs to be identified according to the
preference of one or multiple decision-makers. The
simplest method is to assume independent preferences
among those objectives and apply an additive utility
function. On the other hand, instead of transforming
the original problem into a single-objective one, the
Pareto optimum concept based on non-dominance can
be utilized. Maheshvari et al. used traditional method
to optimize IC engine parameters and transformed the
original problem into a single-objective one [18].

In many MOPs, the considered objectives are in
conflict with each other. Therefore, it is impossible to
gain a solution that optimizes each objective function
concurrently. The answer such problems are a set of
solutions, called Pareto optimal. But, before defining
this term, the concept of dominant must be
introduced. Assume that x1 and x2 are vectors in n-
dimensional space and f is a function. x1 dominates
x2 if the following conditions satisfy:
filx) < fi(xy) (Vi=1,..,k)

and (16)
fi(x) < filxy) QAi=1,..,k)

Pareto optimal is a solution which is not
dominated by any other solution in the solution space.
The main characteristic of the Pareto optimal solution
is that it cannot be improved with respect to an
objective unless deteriorating at least one other
objective. A set of all these non-dominated solutions
is called Pareto optimal set and the corresponding
objective function values in the objective space are
the Pareto front. Finding the Pareto front, which

consists of Pareto optimum solutions, is the major
goal in MOPs.

In order to deal with this multi-objective
optimization problem, a multi-objective evolutionary
algorithm is proposed. To generate a Pareto-optimal,
the powerful multi-objective evolutionary algorithm,
Non-dominated Sorting Genetic Algorithm (NSGA-
II), was used. The NSGA-II makes use of a fast non-
dominated sorting approach, elitist strategy, and a
crowded comparison operator to create Pareto-
optimal solutions. First a random parent population is
created. Binary tournament selection, recombination,
and mutation operators are used to create a child
population. Then, a combined parent and child
population is formed. This allows parent solutions to
be compared with the child population, thereby
ensuring elitism. The population is sorted according
to non-domination. The new same size parent
population is formed according to non-domination
ranks and crowded comparison operator. This
population is now used for selection, crossover and
mutation to create a new population [19].

5. Pareto optimization of power and overall
emissions using neural network models

In order to gain optimal power and overall
emissions, the neural network models obtained in the
previous sections are now used in a multi-objective
optimization procedure. The two objectives in this
study are overall engine exhaust emissions and power
to be simultaneously optimized with respect to the
design variables, namely injection timing, engine
speed and engine load. The overall exhaust emission
was defined as below [18].

Overall emissions

_ NOx + co
NOxmax COmax
+ CO, HC a7
COZ max HCmax
Smoke
Smoken,qx

The corresponding Pareto front of two objectives
power and overall emissions has been shown in Fig.
5. It is clear from this figure that choosing appropriate
values for engine speed, load and injection timing for
obtaining a better value of one objective would cause
a worse value of another objective.

Four sections, A, B, C and D, can be seen from
Fig. 5 that illustrate important optimal design facts.
Area between sections A and B exhibits an increase
of power with a small change in overall emissions
according to its slip 1.98. Area between sections C
and D exhibits a significant increase of overall
emission while power (slip 8.86) is not increases
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significantly. Therefore, changing the injection
timing, engine speed and engine load as decision
variables should be in such a way that power and
overall emission lies between sections B and C of the
Pareto optimal front which has a slip of 3.45.

As shown in Fig. 5, the optimal result was
selected and has the coordinates of (50,143). This

point corresponds to Power of 50 HP and overall
emissions of 143. In other words, with the engine
speed 1943 rpm, load of 240.82 N.m. and injection
timing -7.8 ( 7.8 bTDC), the best solution was
obtained

Overall emissions
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=
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Fig5.Optimization result (Pareto front)

Table 4 The weights and biases between input layer and hidden layer for Egs. (3) to (10).

Ui=CliXI+C2iXN+C3iXL+C4i

i Cy Cai Csi Cy

1 -8.0268 2.5952 12.6505 -3.1785
2 -4.27729 -27.6237 10.7672 19.6299
3 -3.5191 0.59379 -7.7725 4.6328

4 1.8233 7.9999 22.3282 -13.0801
5 -10.5491 -34.8195 0.10597 29.4396
6 11.2742 27.1059 2.1041 -23.5179
7 -8.5576 26.9746 3.7775 -33.653
8 -3.4063 34.4069 7.185 -34.2456
9 -7.0547 -6.9283 6.3134 -5.3252
10 -7.7067 -36.7574 4.8087 22.6632
11 129156 30.3336 -1.6584 -17.4314
12 -8.7067 -33.0747 6.3342 18.8497
13 13.5601 -11.4703 -0.19769 18.4414
14 0.0089625 -47.7151 5.3141 27.2334
15 -1.3715 -19.8066 11.6078 -3.2733

6. Conclusion

In this investigation, It is assessed the influence of
three key factors of engine loads, speeds and injection
timing. After getting data from experimental tests by
varying the engine speed, load and injection timing,

using ANN to modeling the engine to predict the
performance and emissions for all operating
conditions. This reduces the experimental efforts and
hence can serve as an effective tool for predicting the
performance of the engine and emission
characteristics under various operating conditions. It
is considered that the ANN results are very good and
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R values in this model are very close to one. Results
showed Correlation coefficients of 0.9902, 0.993,
0.998, 0.9916, 0.9923, 0.9951, 0.9921 and 0.9908
were obtained for the HC, CO,, CO, NOx, smoke,
power, BSFC, peak pressure at the training stage
respectively. Then, by using NSGA II, the best
solution was obtained to optimize the two objective
functions minimum overall exhaust emissions and
maximum engine power.
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